A Review of Path Planning for
Autonomous Robotics

Joseph M. Wetterling
jwetterling@acm.org

I ntroduction

The problem of path planning is a common one in computer science, particular in the area of
atificd intdligence. It involves finding the optima path from some starting point to an end point or god
date. Thisoptima path is defined, in this case, as the shortest or lowest-cost of those paths that span
from start to goal. The area being searched can be defined, for instance, as a sate- space (network) of
nodes and the available paths as the arcs between those nodes.

Imagine we are trying to get to the Trenton Computer Festiva in Edison, NJ from New
Brunswick (Figure 1). There are severd different routes we can take, and we must consider both the
length of each road and how close it will take usto our god in making adecison. Traveling to Milltown
may be ashort trip, but it takes us in the wrong direction. While Highland Park may be adightly longer
dep, it gets us sgnificantly closer. While these decisions seem like common sense to us, a computer
needs to be taught such planning rules. (Its hard to consider “moving toward your destination gets your
therefaster” to be a“rule’ only because we know it so implicitly.)

Edison

New Brunswick Highland Park -

Milltown -

Figurel Figure2

At other times, two paths may both be heading in the same direction and seem the same length.
Another factor, broadly called the “ path cost”, helps determine the better choice. Consider the two
roadsin figure 2. While Robert Frogt might disagree, there is an obvious choice when efficiency isthe
key factor. One path isclearly easier (and, therefore, less* costly”) to travel than the other.

A good path-planning agorithm, then, needs to possess some “common sense’. It also must be

ableto work efficiently, as most meaningful problems (navigeting aroom, traveling from one city to
another, etc.) involve a great number of possible choices.

91

Brute Force Methods

“Brute forceg” solutions to path planning solve the problem and some could even be considered
elegant solutions — expressed in very few, understandable lines of code. These methods force their way
to the solution by checking every possible answer until either the correct oneisfound or the list of
possihilitiesis exhausted. For any sgnificant problem, they violate the requirement of efficiency.

Consder the gtate-spacein figure 3. The shortest path from start (marked *O’) to finish
(marked ‘ X*) can easily be found using a breadth-first search (pseudo- code shown in figure 4).

@) Put State on the OPEN list
While OPEN ligt is not empty
¢ \A Remove leftmost state from OPEN
a b C If it isthe god, success
e

Else

¢ Generate children of the Sate

— X Put the state on CLOSED

Ignore children on OPEN/CLOSED
Put others on right end of OPEN
Figure3 Figure4

Breadth-first search is one example of a brute-force search. 1t doesn't use aredly intelligent
strategy to find the god. Breadth-first, however, does happen to aways find the best solution. Not all
brute-force methods have this guarantee (depth-first search, for example).

Breadth-first search usestwo ligts, called OPEN and CLOSED here. Theselist which states,
out of O, a b, ¢, d, g X, are currently under consideration (OPEN) or completely eiminated
(CLOSED). Fird, the gart state (O) is put on the OPEN list. Therest of the search takes placein a
loop, running until it is out of states on OPEN (failure) or finds the god (success). During each iteration
of theloop, the search looks at the leftmost item on the OPEN ligt; we ll call this X. The children of X —
thet is, those nodes pointed to by arrows coming from X — are examined. All those not dready
duplicated on the OPEN ligt or dready CLOSED are put on the list for consderation.

Using the example in Figure 3, the search would progress like this.

OPEN CLOSED
1. O none
2. abc O
3. bcde Oa
4, cde Oab
5. deX Oabc
6. eX Oabcd
7. X Oabcde
8. Success— X isthe god

92

Note that in step 4, because e was dready on thelist (a-> €), it was not added again. The
search stops after X isfound; it is coincidence that X happens to adso be the last node in the search. If
the goa were at node ¢, the search would have stopped at step 5, when ¢ was examined. This
procedure found the answer, of course, but it needed to go through every possbility. If there were
hundreds of nodes, this could have been avery long exercise!

Admissible Heuristics

There are consderably better options available. Much literature has been published about path-
planning methods that are more efficient than brute-force dgorithms. Most of these methods use
heurigtics— “guesses’ about which paths are likely to be good answers.

There can be many heurigtics able to solve a single problem. For example, game playing —a
cousin of the path-planning problem — makes use of many heurigtics. In the game of chess, there are
countless ways to gauge your performance versus your opponent. Y ou could look at who has more
pieces. Thisisaheurigtic. Y ou could give each piece avaue (pawn = 1, queen = 9, etc.) and consder
who has more points. Thisis another possible heurigtic. For yet another, you could judge who has
better control of the center or makes better use of his pawns. All of these can help solve your problem,
but which do you use? We need away to judge which heuristics will solve our problem better. One
way to do this for path-planning problemsisto use theidea of “admisshbility.”

An admissible dgorithm is one that never overestimates the cost of traveling from one node to
another. If thereisacog, X, of traveling from node a to node b, then an admissible heuristic would
return avaue <= X for thispath. The closer it getsto X, the more “wel-informed” it is conddered, but
the fact that it isa or under X iswhat matters more.

The common name for these dgorithms needs to be mentioned, asit will come into play later.
An dgorithm that works perfectly (which isimpossible for any sgnificant problem) iscdled A. Thisis
our idedl. The dgorithm that gpproximates it, usng an admissible heuridtics, is caled A* (read “ay-
star’).

Why be concerned with admissibility? Simple. Avoiding adetailed anayss— which many good
introductory artificia intelligence textbooks can give you — an dgorithm using an admissible heurigtic is
guaranteed to dways return the optimad path! Algorithms with admissible heuristics have solved many
path-planning problems. By describing an environment as a series of nodes — a state- space — and
gpplying an admissible heurigtic, we can find the optimd path to our godl.

Still, there are more problems that cannot be solved by this procedure. Algorithms using
admissible heuridtics rely on perfect information and an unchanging Sate-space. Perfect information
means that we know, in advance, exactly what the environment is like — number and position of nodes,
cost of paths, etc. And an unchanging state- pace means that that perfect information remains perfect.
This presents a Sizegble problem for us. Almost every sgnificant problem breaks one or both of these
requirements. Even waking across a room lacks unchanging information, which anyone who has ever
stubbed their toein achair or end table can tell you.

93

The Dynamic Planning Problem

These changing, imperfectly-known environmerts — the “real world” problems — present a need
for dynamic planning. Firgt, thereis the case of not having perfect information. A robot, especidly,
needs to react to discoveries about its environment. A Smple example of this comes from the bump-
and-go cars | used to play with asachild. Granted, they had afairly smple - and rather chaotic -
agorithm for handling contact with wals, but they did, in fact, have aresponse to the problem. A more
sophisticated robot could record the new information and move around it — ether traveling dong the
wall, hoping to follow it closer to the god, or perhaps assuming it is alarge obstacle, and turning away
fromit. The key isrecording the information for future use. A state-gpace map is an excellent method
for such recording, though there are others. Without this recorded information, the robot is forever
sumbling about “in the dark”.

Second, there is the case of changing information. Even in an environment which is currently
perfectly-known, things can changein the future. If arobot | sent into a perfectly mapped room, and
someone has moved a chair by one inch, what happensto the robot? Would it drive repeatedly into it,
or learn the new location and plan around it? Planning around such new obstacles is difficult, however,
asthe size of the object is unknown. We only know it isthere; it could be the size of the robot or a
hundred times the Size of it.

There are severa research projects being done dong thisvein. Carnegie Mélon University and
Renssdear Polytechnic Ingtitute, for two examples, are doing research in the area of robot path
planning. Their work is highly recommended reading. One research project from afaculty member at
Carnegie Mdlon is of particular interest, and it's described briefly here.

The D* Algorithm

An dgorithm called D* (read "dee-gta™), which stands for "dynamic A*", provides a solution
for changing environments. Caculating a new optima path each time the environment changesis
inefficient, and it could result in hundreds or thousands of replannings*

Many obstacles to be encountered in a changing environment will be relatively smal and
therefore affect only the local environment (the "nearest” few states, by depth and/or cost)®. The D*
agorithm only replansthisloca path, assuming that the rest of the planned path is il viable. (Thereis
No reason not to assume this, as the more distant path may be the same or vadtly different; the algorithm
will replan when it reeches those later obstructions anyway.)

! Stentz, Anthony. Optimal and Efficient Path Planning for Partially-Known Environments. Proceedings IEEE
International Conference on Robotics and Automation, May 1994. Online. Carnegie Mellon University. Internet. 7
Feb. 2001.

2 Stentz, Anthony. Real-Time Replanning in Dynamic and Unknown Environments. Online. Carnegie Mellon
University. Internet. 7 Feb. 2001

The developer of D*, Anthony Stentz of Carnegie Mdlon University, proves the admissbility of
D* inone of hisearly technicd reports, which makes it a viable solution to the dynamic planning
problem.®

3-D Environments

There are plenty of other, rea-world concernsin planning for autonomous robotics. I'll address
only one here, briefly, to give the reader an idea of them. A robot traveling in the real world needsto
handle not only information about the length and width of objects and paths around it, but it must
undergand height aswell. Why is this necessary when arobot may be low-to-the-ground and only
move dong two dimensons?

Roboatic vision is not nearly as accurate as our own, &t least asfar as distinguishing objects and
paths. If the robot islooking at the image in figure 5, it may represent thisinternaly as shown in figure 6.
The digtinction between a safe path and a potentialy dangerous obstacle islost because in two
dimensions, they look dike.

3 Stentz, Anthony. Optimal and Efficient Path Planning for Unknown and Dynamic Environments. Carnegie Mellon
Robotics I nstitute Technical Report CMU-RI-TR-93-20, Aug. 1993. Online. Carnegie Mellon University. Internet. 7
Feb. 2001.

Figure5

TREE ROAD

Figure 6

There are severa specific concepts — admisshility, handling imperfect information, dynamic
versus gatic planning — which comprise the basics of robot path planning. There are many different
directions to go from there, however. Path planning can concern itsdf with navigating aroom or a
moon, with learning the best way around an unchanging office or dynamicaly reacting to faling debrisin
adangerous rescue operation. For further reading, | suggest severd starting points:

MIT Al Lab: Mobot Group
http:/AMww.al.mit.edw/projects'mobile-robots/

NASA, Advanced Autonomy for Rovers
http://ic-www.arc.nasa.gov/proj ectsa-roversindex.html

Renssdlear Polytechnic Ingtitute, Robotics Lab
http://www.robotics.cs.rpi.edu/

The Roboatics Inditute, Carnegie Mdlon University
http:/Aww.ri.cmu.edu/

The Tech Museum: Robotics
http://www.thetech.org/robotics/

